Reading and Writing Data

Code and text for Quiz 4 Regarding CO2 emissions

  1. Load the R packages we will use.
library(tidyverse)
library(here)
library(janitor)
library(skimr)
  1. Download CO2 emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file to file_csv. The data should be in the same directory as this file

Read the data into R and assign it to emissions

file_csv  <- here("_posts", 
              "2022-02-02-reading-and-writing-data",
              "co-emissions-per-capita.csv") 

emissions  <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) emissions
emissions
# A tibble: 23,307 x 4
   Entity      Code   Year `Annual CO2 emissions (per capita)`
   <chr>       <chr> <dbl>                               <dbl>
 1 Afghanistan AFG    1949                              0.0019
 2 Afghanistan AFG    1950                              0.0109
 3 Afghanistan AFG    1951                              0.0117
 4 Afghanistan AFG    1952                              0.0115
 5 Afghanistan AFG    1953                              0.0132
 6 Afghanistan AFG    1954                              0.013 
 7 Afghanistan AFG    1955                              0.0186
 8 Afghanistan AFG    1956                              0.0218
 9 Afghanistan AFG    1957                              0.0343
10 Afghanistan AFG    1958                              0.038 
# ... with 23,297 more rows
  1. Start with emissions data then,
tidy_emissions   <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 23,307 x 4
   entity      code   year annual_co2_emissions_per_capita
   <chr>       <chr> <dbl>                           <dbl>
 1 Afghanistan AFG    1949                          0.0019
 2 Afghanistan AFG    1950                          0.0109
 3 Afghanistan AFG    1951                          0.0117
 4 Afghanistan AFG    1952                          0.0115
 5 Afghanistan AFG    1953                          0.0132
 6 Afghanistan AFG    1954                          0.013 
 7 Afghanistan AFG    1955                          0.0186
 8 Afghanistan AFG    1956                          0.0218
 9 Afghanistan AFG    1957                          0.0343
10 Afghanistan AFG    1958                          0.038 
# ... with 23,297 more rows
  1. Start with the tidy_emissions then,
tidy_emissions  %>% 
  filter(year == 1993)  %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 227
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 227 0
code 12 0.95 3 8 0 215 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1993.00 0.00 1993.00 1993.00 1993.00 1993.00 1993.00 ▁▁▇▁▁
annual_co2_emissions_per_capita 0 1 5.07 6.96 0.04 0.59 2.76 7.38 61.19 ▇▁▁▁▁
  1. 13 observations have a missing code. How are these observations different?
tidy_emissions  %>% 
  filter(year == 1993, is.na(code))  
# A tibble: 12 x 4
   entity                     code   year annual_co2_emissions_per_ca~
   <chr>                      <chr> <dbl>                        <dbl>
 1 Africa                     <NA>   1993                         1.04
 2 Asia                       <NA>   1993                         2.24
 3 Asia (excl. China & India) <NA>   1993                         3.22
 4 EU-27                      <NA>   1993                         8.52
 5 EU-28                      <NA>   1993                         8.70
 6 Europe                     <NA>   1993                         9.35
 7 Europe (excl. EU-27)       <NA>   1993                        10.5 
 8 Europe (excl. EU-28)       <NA>   1993                        10.6 
 9 North America              <NA>   1993                        14.0 
10 North America (excl. USA)  <NA>   1993                         4.97
11 Oceania                    <NA>   1993                        11.5 
12 South America              <NA>   1993                         2.09

Note: Entities that are not countries do not have country codes.

  1. Start with tidy_emissions then,
emissions_1993  <- tidy_emissions  %>% 
  filter(year == 1993, !is.na(code))   %>% 
  select(-year)  %>% 
  rename(country = entity)
  1. Which 15 countries have the highest annual_co2_emissions_per_capita?
max_15_emitters  <- emissions_1993  %>% 
  slice_max(annual_co2_emissions_per_capita, n = 15)
  1. Which 15 countries have the lowest annual_co2_emissions_per_capita?
min_15_emitters  <- emissions_1993  %>% 
  slice_min(annual_co2_emissions_per_capita, n = 15)
  1. Use bind_rows to bind together the max_15_emitters and min_15_emitters
max_min_15  <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export max_min_15 to 3 file formats
max_min_15  %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15  %>% write_tsv("max_min_15.tsv")  # tab separated
max_min_15  %>% write_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Read the 3 file formats into R
max_min_15_csv <-  read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <-  read_tsv("max_min_15.tsv")  # tab separated
max_min_15_psv <-  read_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Use setdiff to check for any differences among max_min_15_csv, max_min_15_tsv and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   annual_co2_emissions_per_capita <dbl>

Are there any differences?

  1. Reorder country in max_min_15 for plotting and assign to max_min_15_plot_data
max_min_15_plot_data  <- max_min_15 %>%
  mutate(country = reorder(country, annual_co2_emissions_per_capita))  
  1. Step 16 Plot max_min_15_plot_data
ggplot(data = max_min_15_plot_data, 
       mapping = aes(x= annual_co2_emissions_per_capita, y = country)) +
  geom_col() +
  labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
       subtitle = "for 1993", 
       x = NULL, 
       y = NULL)  

  1. Save the plot directory with this post
ggsave(filename = "preview.png", 
       path = here("_posts", "2022-02-02-reading-and-writing-data"))
  1. Add preview.png to yaml chuck at the top of this file
#preview: preview.png