Joining Data

Code and text for Quiz 6, more dplyr and our first interactive chart using echarts4r.

Steps 1-6

  1. Load the R packages we will use.
library(tidyverse)
library(echarts4r)  #install this package before using
library(hrbrthemes) #install this package before using
  1. Read the data in the files, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos  <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos  <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
health_cos %>% glimpse()  
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
  1. Which variables are the same in both data sets
names_drug  <- drug_cos  %>%  names() 
names_health  <- health_cos  %>%  names() 
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  

[1] “ticker” “name” “year”

  1. Select subset of variables to work with
drug_subset  <- drug_cos  %>% 
  select(ticker, year, grossmargin)  %>% 
  filter(year == 2018)

health_subset  <- health_cos  %>%
  select(ticker, year, revenue, gp, industry)  %>% 
  filter(year == 2018)
  1. Keep all the rows and columns drug_subset join with columns in health_subset
drug_subset  %>% left_join(health_subset)
# A tibble: 13 x 6
   ticker  year grossmargin     revenue          gp industry          
   <chr>  <dbl>       <dbl>       <dbl>       <dbl> <chr>             
 1 ZTS     2018       0.672  5825000000  3914000000 Drug Manufacturer~
 2 PRGO    2018       0.387  4731700000  1831500000 Drug Manufacturer~
 3 PFE     2018       0.79  53647000000 42399000000 Drug Manufacturer~
 4 MYL     2018       0.35  11433900000  4001600000 Drug Manufacturer~
 5 MRK     2018       0.681 42294000000 28785000000 Drug Manufacturer~
 6 LLY     2018       0.738 24555700000 18125700000 Drug Manufacturer~
 7 JNJ     2018       0.668 81581000000 54490000000 Drug Manufacturer~
 8 GILD    2018       0.781 22127000000 17274000000 Drug Manufacturer~
 9 BMY     2018       0.71  22561000000 16014000000 Drug Manufacturer~
10 BIIB    2018       0.865 13452900000 11636600000 Drug Manufacturer~
11 AMGN    2018       0.827 23747000000 19646000000 Drug Manufacturer~
12 AGN     2018       0.861 15787400000 13596000000 Drug Manufacturer~
13 ABBV    2018       0.764 32753000000 25035000000 Drug Manufacturer~

Question: join_ticker

drug_cos_subset  <- drug_cos  %>% 
  filter(ticker == "BIIB")

drug_cos_subset
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 BIIB   Biog~ Massach~        0.404       0.908     0.245 0.333 0.204
2 BIIB   Biog~ Massach~        0.402       0.901     0.25  0.335 0.211
3 BIIB   Biog~ Massach~        0.432       0.876     0.269 0.355 0.233
4 BIIB   Biog~ Massach~        0.475       0.879     0.302 0.404 0.294
5 BIIB   Biog~ Massach~        0.493       0.885     0.33  0.437 0.321
6 BIIB   Biog~ Massach~        0.491       0.871     0.323 0.431 0.322
7 BIIB   Biog~ Massach~        0.495       0.867     0.207 0.407 0.209
8 BIIB   Biog~ Massach~        0.511       0.865     0.329 0.435 0.334
# ... with 1 more variable: year <dbl>

combo_df  <- drug_cos_subset  %>% 
  left_join(health_cos)

combo_df
# A tibble: 8 x 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 BIIB   Biog~ Massach~        0.404       0.908     0.245 0.333 0.204
2 BIIB   Biog~ Massach~        0.402       0.901     0.25  0.335 0.211
3 BIIB   Biog~ Massach~        0.432       0.876     0.269 0.355 0.233
4 BIIB   Biog~ Massach~        0.475       0.879     0.302 0.404 0.294
5 BIIB   Biog~ Massach~        0.493       0.885     0.33  0.437 0.321
6 BIIB   Biog~ Massach~        0.491       0.871     0.323 0.431 0.322
7 BIIB   Biog~ Massach~        0.495       0.867     0.207 0.407 0.209
8 BIIB   Biog~ Massach~        0.511       0.865     0.329 0.435 0.334
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

co_name  <- combo_df  %>% 
  distinct(name)  %>% 
  pull() 

Assign the company location to co_location

co_location  <- combo_df  %>% 
  distinct(location)  %>% 
  pull() 

co_industry  <- combo_df  %>% 
  distinct(industry)  %>% 
  pull() 

Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Biogen Inc is located in Massachusetts; U.S.A and is a member of the Drug Manufacturers - General industry group.

combo_df_subset  <- combo_df  %>% 
  select(year, grossmargin, netmargin, 
  revenue, gp, netincome)

combo_df_subset
# A tibble: 8 x 6
   year grossmargin netmargin     revenue          gp  netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>      <dbl>
1  2011       0.908     0.245  5048634000  4581854000 1234428000
2  2012       0.901     0.25   5516461000  4970967000 1380033000
3  2013       0.876     0.269  6932200000  6074500000 1862300000
4  2014       0.879     0.302  9703300000  8532300000 2934800000
5  2015       0.885     0.33  10763800000  9523400000 3547000000
6  2016       0.871     0.323 11448800000  9970100000 3702800000
7  2017       0.867     0.207 12273900000 10643900000 2539100000
8  2018       0.865     0.329 13452900000 11636600000 4430700000

combo_df_subset  %>% 
  mutate(grossmargin_check = gp / revenue,
  close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin     revenue          gp  netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>      <dbl>
1  2011       0.908     0.245  5048634000  4581854000 1234428000
2  2012       0.901     0.25   5516461000  4970967000 1380033000
3  2013       0.876     0.269  6932200000  6074500000 1862300000
4  2014       0.879     0.302  9703300000  8532300000 2934800000
5  2015       0.885     0.33  10763800000  9523400000 3547000000
6  2016       0.871     0.323 11448800000  9970100000 3702800000
7  2017       0.867     0.207 12273900000 10643900000 2539100000
8  2018       0.865     0.329 13452900000 11636600000 4430700000
# ... with 2 more variables: grossmargin_check <dbl>,
#   close_enough <lgl>

combo_df_subset  %>% 
  mutate(netmargin_check = netincome / revenue,
  close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin     revenue          gp  netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>      <dbl>
1  2011       0.908     0.245  5048634000  4581854000 1234428000
2  2012       0.901     0.25   5516461000  4970967000 1380033000
3  2013       0.876     0.269  6932200000  6074500000 1862300000
4  2014       0.879     0.302  9703300000  8532300000 2934800000
5  2015       0.885     0.33  10763800000  9523400000 3547000000
6  2016       0.871     0.323 11448800000  9970100000 3702800000
7  2017       0.867     0.207 12273900000 10643900000 2539100000
8  2018       0.865     0.329 13452900000 11636600000 4430700000
# ... with 2 more variables: netmargin_check <dbl>,
#   close_enough <lgl>

Question: summarize_industry

health_cos  %>% 
  group_by(industry)  %>% 
  summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
            median_netmargin_percent = median(netincome / revenue) * 100,
            min_netmargin_percent = min(netincome / revenue) * 100,
            max_netmargin_percent = max(netincome / revenue) * 100
  ) 
# A tibble: 9 x 5
  industry          mean_netmargin_~ median_netmargi~ min_netmargin_p~
  <chr>                        <dbl>            <dbl>            <dbl>
1 Biotechnology                -4.66             7.62         -197.   
2 Diagnostics & Re~            13.1             12.3             0.399
3 Drug Manufacture~            19.4             19.5           -34.9  
4 Drug Manufacture~             5.88             9.01          -76.0  
5 Healthcare Plans              3.28             3.37           -0.305
6 Medical Care Fac~             6.10             6.46            1.40 
7 Medical Devices              12.4             14.3           -56.1  
8 Medical Distribu~             1.70             1.03           -0.102
9 Medical Instrume~            12.3             14.0           -47.1  
# ... with 1 more variable: max_netmargin_percent <dbl>

Question: inline_ticker

health_cos_subset  <- health_cos  %>% 
  filter(ticker == "ILMN")
health_cos_subset 
# A tibble: 8 x 11
  ticker name       revenue     gp    rnd netincome assets liabilities
  <chr>  <chr>        <dbl>  <dbl>  <dbl>     <dbl>  <dbl>       <dbl>
1 ILMN   Illumina ~  1.06e9 7.09e8 1.97e8  86628000 2.20e9  1120625000
2 ILMN   Illumina ~  1.15e9 7.74e8 2.31e8 151254000 2.57e9  1247504000
3 ILMN   Illumina ~  1.42e9 9.12e8 2.77e8 125308000 3.02e9  1485804000
4 ILMN   Illumina ~  1.86e9 1.30e9 3.88e8 353351000 3.34e9  1876842000
5 ILMN   Illumina ~  2.22e9 1.55e9 4.01e8 462000000 3.69e9  1839194000
6 ILMN   Illumina ~  2.40e9 1.67e9 5.04e8 454000000 4.28e9  2011000000
7 ILMN   Illumina ~  2.75e9 1.83e9 5.46e8 725000000 5.26e9  2508000000
8 ILMN   Illumina ~  3.33e9 2.3 e9 6.23e8 826000000 6.96e9  3114000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>

Run the code below

health_cos_subset  %>% 
  distinct(name) %>%  
  pull(name)
[1] "Illumina Inc"
co_name  <- health_cos_subset  %>% 
  distinct(name) %>% 
  pull(name)

You can take output from your code and include it in your text.

In following chuck

co_industry  <- health_cos_subset  %>% 
  distinct(industry) %>% 
  pull()

This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Illumina Inc is a member of the Diagnostics & Research group.


Steps 7-11

  1. Prepare the data for the plots
df <- health_cos  %>% 
  group_by(industry)  %>%
  summarize(med_rnd_rev = median(rnd/revenue)) 
  1. Use glimpse to glimpse the data for the plots
df  %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "Drug~
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, ~
  1. Create a static bar chart
ggplot(data = df, 
       mapping = aes(
         x = reorder(industry, med_rnd_rev ),
         y = med_rnd_rev
         )) +
  geom_col() + 
  scale_y_continuous(labels = scales::percent) +
  coord_flip() +
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue from 2011 to 2018",
    x = NULL, y = NULL) +
  theme_ipsum()

  1. Save the previous plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png", 
       path = here::here("_posts", "2022-02-09-joining-data"))
  1. Create an interactive bar chart using the package echarts4r
df  %>% 
  arrange(med_rnd_rev)  %>%
  e_charts(
    x = industry
    )  %>% 
  e_bar(
    serie = med_rnd_rev, 
    name = "median"
    )  %>%
  e_flip_coords()  %>% 
  e_tooltip()  %>% 
  e_title(
    text = "Median industry R&D expenditures", 
    subtext = "by industry as a percent of revenue from 2011 to 2018",
    left = "center") %>% 
  e_legend(FALSE) %>% 
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
    )  %>%
  e_y_axis(
    show = FALSE
  )  %>% 
  e_theme("infographic")