Code and text for Quiz 6, more dplyr and our first interactive chart using echarts4r.
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",~
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti~
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, ~
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, ~
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640~
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390~
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, ~
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, ~
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2~
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, ~
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru~
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
[1] “ticker” “name” “year”
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer~
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer~
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer~
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer~
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer~
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer~
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer~
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer~
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer~
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer~
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer~
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer~
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer~
Start with drug_cos
Extract observations for the ticker BIIB from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BIIB Biog~ Massach~ 0.404 0.908 0.245 0.333 0.204
2 BIIB Biog~ Massach~ 0.402 0.901 0.25 0.335 0.211
3 BIIB Biog~ Massach~ 0.432 0.876 0.269 0.355 0.233
4 BIIB Biog~ Massach~ 0.475 0.879 0.302 0.404 0.294
5 BIIB Biog~ Massach~ 0.493 0.885 0.33 0.437 0.321
6 BIIB Biog~ Massach~ 0.491 0.871 0.323 0.431 0.322
7 BIIB Biog~ Massach~ 0.495 0.867 0.207 0.407 0.209
8 BIIB Biog~ Massach~ 0.511 0.865 0.329 0.435 0.334
# ... with 1 more variable: year <dbl>
Use left_join to combine the rows and columns of drug_cos_subset with the columns of health_cos
Assign the output to combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BIIB Biog~ Massach~ 0.404 0.908 0.245 0.333 0.204
2 BIIB Biog~ Massach~ 0.402 0.901 0.25 0.335 0.211
3 BIIB Biog~ Massach~ 0.432 0.876 0.269 0.355 0.233
4 BIIB Biog~ Massach~ 0.475 0.879 0.302 0.404 0.294
5 BIIB Biog~ Massach~ 0.493 0.885 0.33 0.437 0.321
6 BIIB Biog~ Massach~ 0.491 0.871 0.323 0.431 0.322
7 BIIB Biog~ Massach~ 0.495 0.867 0.207 0.407 0.209
8 BIIB Biog~ Massach~ 0.511 0.865 0.329 0.435 0.334
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
Assign the company location to co_location
Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Biogen Inc is located in Massachusetts; U.S.A and is a member of the Drug Manufacturers - General industry group.
Start with combo_df
Select variables (in this order): year, grossmargin, netmargin, revenue, gp, netincome
Assign the output to combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5048634000 4581854000 1234428000
2 2012 0.901 0.25 5516461000 4970967000 1380033000
3 2013 0.876 0.269 6932200000 6074500000 1862300000
4 2014 0.879 0.302 9703300000 8532300000 2934800000
5 2015 0.885 0.33 10763800000 9523400000 3547000000
6 2016 0.871 0.323 11448800000 9970100000 3702800000
7 2017 0.867 0.207 12273900000 10643900000 2539100000
8 2018 0.865 0.329 13452900000 11636600000 4430700000
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5048634000 4581854000 1234428000
2 2012 0.901 0.25 5516461000 4970967000 1380033000
3 2013 0.876 0.269 6932200000 6074500000 1862300000
4 2014 0.879 0.302 9703300000 8532300000 2934800000
5 2015 0.885 0.33 10763800000 9523400000 3547000000
6 2016 0.871 0.323 11448800000 9970100000 3702800000
7 2017 0.867 0.207 12273900000 10643900000 2539100000
8 2018 0.865 0.329 13452900000 11636600000 4430700000
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check to compare with the variable netmargin. They should be equal.
Create the variable close_enough to check that the absolute value of the difference between netmargin_check and netmargin is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.908 0.245 5048634000 4581854000 1234428000
2 2012 0.901 0.25 5516461000 4970967000 1380033000
3 2013 0.876 0.269 6932200000 6074500000 1862300000
4 2014 0.879 0.302 9703300000 8532300000 2934800000
5 2015 0.885 0.33 10763800000 9523400000 3547000000
6 2016 0.871 0.323 11448800000 9970100000 3702800000
7 2017 0.867 0.207 12273900000 10643900000 2539100000
8 2018 0.865 0.329 13452900000 11636600000 4430700000
# ... with 2 more variables: netmargin_check <dbl>,
# close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use the health_cos data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100
)
# A tibble: 9 x 5
industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
<chr> <dbl> <dbl> <dbl>
1 Biotechnology -4.66 7.62 -197.
2 Diagnostics & Re~ 13.1 12.3 0.399
3 Drug Manufacture~ 19.4 19.5 -34.9
4 Drug Manufacture~ 5.88 9.01 -76.0
5 Healthcare Plans 3.28 3.37 -0.305
6 Medical Care Fac~ 6.10 6.46 1.40
7 Medical Devices 12.4 14.3 -56.1
8 Medical Distribu~ 1.70 1.03 -0.102
9 Medical Instrume~ 12.3 14.0 -47.1
# ... with 1 more variable: max_netmargin_percent <dbl>
Fill in the blanks
Use the health_cos data
Extract observations for the ticker ILMN from health_cos and assign to the variable health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ILMN Illumina ~ 1.06e9 7.09e8 1.97e8 86628000 2.20e9 1120625000
2 ILMN Illumina ~ 1.15e9 7.74e8 2.31e8 151254000 2.57e9 1247504000
3 ILMN Illumina ~ 1.42e9 9.12e8 2.77e8 125308000 3.02e9 1485804000
4 ILMN Illumina ~ 1.86e9 1.30e9 3.88e8 353351000 3.34e9 1876842000
5 ILMN Illumina ~ 2.22e9 1.55e9 4.01e8 462000000 3.69e9 1839194000
6 ILMN Illumina ~ 2.40e9 1.67e9 5.04e8 454000000 4.28e9 2011000000
7 ILMN Illumina ~ 2.75e9 1.83e9 5.46e8 725000000 5.26e9 2508000000
8 ILMN Illumina ~ 3.33e9 2.3 e9 6.23e8 826000000 6.96e9 3114000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
Run the code below
You can take output from your code and include it in your text.
In following chuck
This is outside the R chunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.
The company Illumina Inc is a member of the Diagnostics & Research group.
start with health_cos THEN
group_by industry THEN
calculate the median research and development expenditure as a percent of revenue by industry
assign the output to df
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug~
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, ~
use ggplot to initialize the chart
data is df
the variable industry is mapped to the x-axis
the variable med_rnd_rev is mapped to the y-axis
add a bar chart using geom_col
use scale_y_continuous to label the y-axis with percent
use coord_flip() to flip the coordinates
use labs to add title, subtitle and remove x and y-axes
use theme_ipsum() from the hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev ),
y = med_rnd_rev
)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL) +
theme_ipsum()
start with the data df
use arrange to reorder med_rnd_rev
use e_charts to initialize a chart
add a bar chart using e_bar with the values of med_rnd_rev
use e_flip_coords() to flip the coordinates
use e_title to add the title and the subtitle
use e_legend to remove the legends
use e_x_axis to change format of labels on x-axis to percent
use e_y_axis to remove labels on y-axis-
use e_theme to change the theme. Find more themes here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
) %>%
e_theme("infographic")