Code for Quiz 13
Load the R packages we will use.
-Replace all the instances of ???. These are answers on your moodle quiz. -Run all the individual code chunks to make sure the answers in this file correspond with your quiz answers -After you check all your code chunks run then you can knit it. It won’t knit until the ??? are replaced -Save a plot to be your preview plot
-The data this quiz is a subset of HR -Look at the variable definitions -Note that the variables evaluation and salary have been recoded to be represented as words instead of numbers -Set random seed generator to 123
set.seed(123)
hr_2_tidy.csv is the name of your data subset
-Read it into and assign to hr
Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
col_types = "fddfff")
use skim to summarize the data in hr
skim(hr)
Name | hr |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
gender | 0 | 1 | FALSE | 2 | mal: 256, fem: 244 |
evaluation | 0 | 1 | FALSE | 4 | bad: 154, fai: 142, goo: 108, ver: 96 |
salary | 0 | 1 | FALSE | 6 | lev: 95, lev: 94, lev: 87, lev: 85 |
status | 0 | 1 | FALSE | 3 | fir: 194, pro: 179, ok: 127 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
age | 0 | 1 | 39.86 | 11.55 | 20.3 | 29.60 | 40.2 | 50.1 | 59.9 | ▇▇▇▇▇ |
hours | 0 | 1 | 49.39 | 13.15 | 35.0 | 37.48 | 45.6 | 58.9 | 79.9 | ▇▃▂▂▂ |
The mean hours worked per week is: 49.4
specify that hours is the variable of interest
Response: hours (numeric)
# A tibble: 500 x 1
hours
<dbl>
1 78.1
2 35.1
3 36.9
4 38.5
5 36.1
6 78.1
7 76
8 35.6
9 35.6
10 56.8
# ... with 490 more rows
hypothesize that the average hours worked is 48
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
hours
<dbl>
1 78.1
2 35.1
3 36.9
4 38.5
5 36.1
6 78.1
7 76
8 35.6
9 35.6
10 56.8
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups: replicate [1,000]
replicate hours
<int> <dbl>
1 1 39.7
2 1 44.3
3 1 46.8
4 1 33.7
5 1 39.6
6 1 39.5
7 1 40.5
8 1 55.8
9 1 72.6
10 1 35.7
# ... with 499,990 more rows
The output has 500,000 rows
calculate the distribution of statistics from the generated data
-Assign the output null_t_distribution
-Display null_t_distribution
null_t_distribution <- hr %>%
specify(response = age) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "t")
null_t_distribution
Response: age (numeric)
Null Hypothesis: point
# A tibble: 1,000 x 2
replicate stat
<int> <dbl>
1 1 0.144
2 2 -1.72
3 3 0.404
4 4 -1.11
5 5 0.00894
6 6 1.46
7 7 -0.905
8 8 -0.663
9 9 0.291
10 10 3.09
# ... with 990 more rows
-null_t_distribution has 1000 t-stats
visualize the simulated null distribution
visualize(null_t_distribution)
calculate the statistic from your observed data
-Assign the output observed_t_statistic
-Display observed_t_statistic
observed_t_statistic <- hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
calculate(stat = "t")
observed_t_statistic
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1 x 1
stat
<dbl>
1 2.37
get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0.014
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_statistic, direction = "two-sided")
Is the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no
hr_1_tidy.csv is the name of your data subset
-Read it into and assign to hr_2
Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr_2 <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
col_types = "fddfff")
Q: Is the average number of hours worked the same for both genders in hr_2?
-use skim to summarize the data in hr_2 by gender
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | gender |
Variable type: factor
skim_variable | gender | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
evaluation | male | 0 | 1 | FALSE | 4 | bad: 79, fai: 68, goo: 61, ver: 48 |
evaluation | female | 0 | 1 | FALSE | 4 | bad: 75, fai: 74, ver: 48, goo: 47 |
salary | male | 0 | 1 | FALSE | 6 | lev: 49, lev: 48, lev: 48, lev: 44 |
salary | female | 0 | 1 | FALSE | 6 | lev: 47, lev: 46, lev: 41, lev: 39 |
status | male | 0 | 1 | FALSE | 3 | fir: 93, pro: 90, ok: 73 |
status | female | 0 | 1 | FALSE | 3 | fir: 101, pro: 89, ok: 54 |
Variable type: numeric
skim_variable | gender | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | male | 0 | 1 | 38.63 | 11.57 | 20.3 | 28.50 | 37.85 | 49.52 | 59.6 | ▇▇▆▆▆ |
age | female | 0 | 1 | 41.14 | 11.43 | 20.3 | 31.30 | 41.60 | 50.90 | 59.9 | ▆▅▇▇▇ |
hours | male | 0 | 1 | 49.30 | 13.24 | 35.0 | 37.35 | 46.00 | 59.23 | 79.9 | ▇▃▂▂▂ |
hours | female | 0 | 1 | 49.49 | 13.08 | 35.0 | 37.68 | 45.05 | 58.73 | 78.4 | ▇▃▃▂▂ |
-Females worked an average of 49.5 hours per week -Males worked an average of 49.3 hours per week
Use geom_boxplot to plot distributions of hours worked by gender
hr_2 %>%
ggplot(aes(x = gender, y = hours)) +
geom_boxplot()
specify the variables of interest are hours and gender
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 78.1 male
2 35.1 female
3 36.9 female
4 38.5 male
5 36.1 male
6 78.1 female
7 76 female
8 35.6 female
9 35.6 male
10 56.8 male
# ... with 490 more rows
hypothesize that the number of hours worked and gender are independent
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours gender
<dbl> <fct>
1 78.1 male
2 35.1 female
3 36.9 female
4 38.5 male
5 36.1 male
6 78.1 female
7 76 female
8 35.6 female
9 35.6 male
10 56.8 male
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours gender replicate
<dbl> <fct> <int>
1 47.8 male 1
2 60.3 female 1
3 46.5 female 1
4 37.2 male 1
5 74.1 male 1
6 35.9 female 1
7 35.6 female 1
8 54.5 female 1
9 55.6 male 1
10 44.1 male 1
# ... with 499,990 more rows
The output has 500,000 rows
calculate the distribution of statistics from the generated data
-Assign the output null_distribution_2_sample_permute
-Display null_distribution_2_sample_permute
null_distribution_2_sample_permute <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t", order = c("female", "male"))
null_distribution_2_sample_permute
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
replicate stat
<int> <dbl>
1 1 0.505
2 2 -0.650
3 3 0.279
4 4 0.435
5 5 1.73
6 6 -0.139
7 7 -2.14
8 8 0.274
9 9 0.766
10 10 1.52
# ... with 990 more rows
null_t_distribution has 1000 t-stats
visualize the simulated null distribution
visualize(null_distribution_2_sample_permute)
calculate the statistic from your observed data
-Assign the output observed_t_2_sample_stat
-Display observed_t_2_sample_stat
observed_t_2_sample_stat <- hr_2 %>%
specify(response = hours, explanatory = gender) %>%
calculate(stat = "t", order = c("female", "male"))
observed_t_2_sample_stat
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 1 x 1
stat
<dbl>
1 0.160
get_p_value from the simulated null distribution and the observed statistic
null_t_distribution %>%
get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
p_value
<dbl>
1 0.924
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
Is the p-value < 0.05? no
Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes
hr_1_tidy.csv is the name of your data subset
-Read it into and assign to hr_anova
Note: col_types = “fddfff” defines the column types factor-double-double-factor-factor-factor
hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
col_types = "fddfff")
Q: Is the average number of hours worked the same for all three status (fired, ok and promoted) ?
use skim to summarize the data in hr_anova by status
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | status |
Variable type: factor
skim_variable | status | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
gender | fired | 0 | 1 | FALSE | 2 | fem: 96, mal: 89 |
gender | ok | 0 | 1 | FALSE | 2 | fem: 77, mal: 76 |
gender | promoted | 0 | 1 | FALSE | 2 | fem: 87, mal: 75 |
evaluation | fired | 0 | 1 | FALSE | 4 | bad: 65, fai: 63, goo: 31, ver: 26 |
evaluation | ok | 0 | 1 | FALSE | 4 | bad: 69, fai: 59, goo: 15, ver: 10 |
evaluation | promoted | 0 | 1 | FALSE | 4 | ver: 63, goo: 60, fai: 20, bad: 19 |
salary | fired | 0 | 1 | FALSE | 6 | lev: 41, lev: 37, lev: 32, lev: 32 |
salary | ok | 0 | 1 | FALSE | 6 | lev: 40, lev: 37, lev: 29, lev: 23 |
salary | promoted | 0 | 1 | FALSE | 6 | lev: 37, lev: 35, lev: 29, lev: 23 |
Variable type: numeric
skim_variable | status | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | fired | 0 | 1 | 38.64 | 11.43 | 20.2 | 28.30 | 38.30 | 47.60 | 59.6 | ▇▇▇▅▆ |
age | ok | 0 | 1 | 41.34 | 12.11 | 20.3 | 31.00 | 42.10 | 51.70 | 59.9 | ▆▆▆▆▇ |
age | promoted | 0 | 1 | 42.13 | 10.98 | 21.0 | 33.40 | 42.95 | 50.98 | 59.9 | ▆▅▆▇▇ |
hours | fired | 0 | 1 | 41.67 | 7.88 | 35.0 | 36.10 | 38.90 | 43.90 | 75.5 | ▇▂▁▁▁ |
hours | ok | 0 | 1 | 48.05 | 11.65 | 35.0 | 37.70 | 45.60 | 56.10 | 78.2 | ▇▃▃▂▁ |
hours | promoted | 0 | 1 | 59.27 | 12.90 | 35.0 | 51.12 | 60.10 | 70.15 | 79.7 | ▆▅▇▇▇ |
-Employees that were fired worked an average of 41.7 hours per week -Employees that were ok worked an average of 48.0 hours per week -Employees that were promoted worked an average of 59.3 hours per week
Use geom_boxplot to plot distributions of hours worked by status
hr_anova %>%
ggplot(aes(x = status, y = hours)) +
geom_boxplot()
specify the variables of interest are hours and status
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 36.5 fired
2 55.8 ok
3 35 fired
4 52 promoted
5 35.1 ok
6 36.3 ok
7 40.1 promoted
8 42.7 fired
9 66.6 promoted
10 35.5 ok
# ... with 490 more rows
hypothesize that the number of hours worked and status are independent
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 36.5 fired
2 55.8 ok
3 35 fired
4 52 promoted
5 35.1 ok
6 36.3 ok
7 40.1 promoted
8 42.7 fired
9 66.6 promoted
10 35.5 ok
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours status replicate
<dbl> <fct> <int>
1 40.3 fired 1
2 40.3 ok 1
3 37.3 fired 1
4 50.5 promoted 1
5 35.1 ok 1
6 67.8 ok 1
7 39.3 promoted 1
8 35.7 fired 1
9 40.2 promoted 1
10 38.4 ok 1
# ... with 499,990 more rows
The output has 500,000 rows
calculate the distribution of statistics from the generated data
-Assign the output null_distribution_anova
-Display null_distribution_anova
null_distribution_anova <- hr_anova %>%
specify(response = hours, explanatory = gender) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "t")
null_distribution_anova
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
replicate stat
<int> <dbl>
1 1 0.606
2 2 -0.808
3 3 0.430
4 4 -0.136
5 5 0.404
6 6 0.140
7 7 -2.21
8 8 1.46
9 9 -0.585
10 10 -0.927
# ... with 990 more rows
null_distribution_anova has 1000 F-stats
visualize the simulated null distribution
visualize(null_distribution_anova)
calculate the statistic from your observed data
-Assign the output observed_f_sample_stat
-Display observed_f_sample_stat
observed_f_sample_stat <- hr_anova %>%
specify(response = hours, explanatory = status) %>%
calculate(stat = "f")
observed_f_sample_stat
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 1 x 1
stat
<dbl>
1 115.
get_p_value from the simulated null distribution and the observed statistic
null_distribution_anova %>%
get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
p_value
<dbl>
1 0
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
Save preview
If the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no